Abstract

A series of experiments was performed to study the process of adiabatic shear band initiation and formation in steels. The steels include a low carbon cold-rolled steel and three martensitic steels (HY-100 and two tempers of AISI 4340 VAR steel of varying hardness). In each case the specimens are machined as thin-walled tubes that are deformed dynamically in a torsional Kolsky bar (torsional split Hopkinson bar). Shear band initiation and formation are observed by ultrahigh-speed photography of a fine grid pattern deposited on the specimen's surface. It is shown that the critical strain for shear band initiation depends on the magnitude of a preexisting defect, in accordance with the predictions of Molinari and Clifton, J. Appl. Mech., 54 (1991) 806–812. Ultrahigh-speed photographs of the grid pattern show that local strains of 100–1000% may be attained and that the local strain rates reach 10 5 s −1. In addition, the local temperature in the shear band is measured by employing an array of small high-speed infrared detectors that provide a plot of temperature as a function of time and position. Within the shear band region, temperatures of 600 °C have been measured.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.