Abstract

The theory of random linear systems is extended to systems containing one or more non-independent parameters under the assumption that the parameter processes and the solution process have very widely separated spectra. It is shown that the second product moment of the solution satisfies a linear integral equation which can be solved in closed form in some important special cases. The mean square stability theory of equations containing one purely random coefficient initiated by Samuels .nd Eringen is developed further and extended to systems containing one narrow-band random parameter. Specific mean sjuare stability criteria are worked out for an RLC circuit with capacity variations that are a narrow-band stochastic function.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.