Abstract

Consider a queue with a stochastic fluid input process modeled as fractional Brownian motion (fBM).When the queue is stable, we prove that the maximum of the workload process observed over an interval of length $t$ grows like $\gamma(\log t)^{1/(2-2H)}, where $H > ½$ is the self-similarity index (also known as the Hurst parameter) that characterizes the fBM and can be explicitly computed. Consequently, we also have that the typical time required to reach a level $b$ grows like $\exp{b^{2(1-H)}}.We also discuss the implication of these results for statistical estimation of the tail probabilities associated with the steady-state workload distribution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.