Abstract

Abstract Expansion complexity and maximum order complexity are both finer measures of pseudorandomness than the linear complexity which is the most prominent quality measure for cryptographic sequences. The expected value of the Nth maximum order complexity is of order of magnitude log N whereas it is easy to find families of sequences with Nth expansion complexity exponential in log N. This might lead to the conjecture that the maximum order complexity is a finer measure than the expansion complexity. However, in this paper we provide two examples, the Thue-Morse sequence and the Rudin-Shapiro sequence with very small expansion complexity but very large maximum order complexity. More precisely, we prove explicit formulas for their N th maximum order complexity which are both of the largest possible order of magnitude N. We present the result on the Rudin-Shapiro sequence in a more general form as a formula for the maximum order complexity of certain pattern sequences.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.