Abstract
For a multivariate normal set-up, it is well known that themaximumlikelihood estimator (MLE) of covariance matrix is neither admissible nor minimax under the Stein loss function. In this paper, we reveal that the MLE based on the Iwasawa parameterization leads to minimaxity with respect to the Stein loss function. Furthermore, a novel class of loss functions is proposed so that the minimum risks of the MLEs are identical in different coordinate systems, Cholesky parameterization and full Iwasawa parameterization. In other words, the MLEs based on these two different parameterizations are characterized by the property of minimaxity, without a Stein paradox. The application of our novel method to the high-dimensional covariance matrix problem is also discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.