Abstract

This paper concerns the following question: given a subset [Formula: see text] of [Formula: see text] with empty interior and an integrability parameter [Formula: see text], what is the maximal regularity [Formula: see text] for which there exists a non-zero distribution in the Bessel potential Sobolev space [Formula: see text] that is supported in [Formula: see text]? For sets of zero Lebesgue measure, we apply well-known results on set capacities from potential theory to characterize the maximal regularity in terms of the Hausdorff dimension of [Formula: see text], sharpening previous results. Furthermore, we provide a full classification of all possible maximal regularities, as functions of [Formula: see text], together with the sets of values of [Formula: see text] for which the maximal regularity is attained, and construct concrete examples for each case. Regarding sets with positive measure, for which the maximal regularity is non-negative, we present new lower bounds on the maximal Sobolev regularity supported by certain fat Cantor sets, which we obtain both by capacity-theoretic arguments, and by direct estimation of the Sobolev norms of characteristic functions. We collect several results characterizing the regularity that can be achieved on certain special classes of sets, such as [Formula: see text]-sets, boundaries of open sets, and Cartesian products, of relevance for applications in differential and integral equations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call