Abstract

Since its introduction in 2004, the structural similarity (SSIM) index has gained widespread popularity as a tool to assess the quality of images and to evaluate the performance of image processing algorithms and systems. There has been also a growing interest of using SSIM as an objective function in optimization problems in a variety of image processing applications. One major issue that could strongly impede the progress of such efforts is the lack of understanding of the mathematical properties of the SSIM measure. For example, some highly desirable properties such as convexity and triangular inequality that are possessed by the mean squared error may not hold. In this paper, we first construct a series of normalized and generalized (vector-valued) metrics based on the important ingredients of SSIM. We then show that such modified measures are valid distance metrics and have many useful properties, among which the most significant ones include quasi-convexity, a region of convexity around the minimizer, and distance preservation under orthogonal or unitary transformations. The groundwork laid here extends the potentials of SSIM in both theoretical development and practical applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.