Abstract

A hydrodynamic model is employed to derive the magnitude of on-shelf fluxes through a shelf-break canyon for a wide range of canyon sizes and ambient oceanic conditions. Predicted canyon-upwelling fluxes are of the order of 0.05–0.1 Sv (1 Sv=1 million m 3/s), being several orders of magnitude greater than upslope fluxes in the bottom Ekman layer on the ambient continental slope. On the basis of ∼150 simulations conducted, a bulk formula of upwelling flux in a submarine canyon is derived. For typical conditions, the upwelling flux varies quadratically with forcing strength (speed of incident flow), linearly with canyon depth, and is inversely proportional to the buoyancy frequency of the density stratification inside the canyon. Other parameters such as density stratification above shelf-break depth and bottom friction are found to have minor influences on the resultant canyon-upwelling flux.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call