Abstract

A mathematical model of the macrosegregation of continuous cast high carbon steel billet was developed based upon a representative volume element, considering the flow of enriched liquid, solidification rate, and solidification shrinkage as well. It was found that a lower casting velocity, higher cooling intensity, and shorter solidification interval positively contributed to the inhibition of macrosegregation in a continuously cast billet when a mechanical reduction process was not applied. A numerical expression for the relative flow velocity of liquid was further proposed incorporating such aspects as casting velocity, densities of different phases, and the variation of cross section areas as well. The analysis based on this numerical expression indicated that the overall effect of the reduction process on the macrosegregation of billets depended not only on the reduction zone but also on the reduction amount and its distribution for the active reduction rolls. The test results of further practical plant trials demonstrated a reasonable agreement with the predictions obtained from the proposed numerical model, indicating the reliability of this analysis model to be employed for the continuous casting of high carbon steel billet with strand reduction process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.