Abstract
The M/G/2 queueing model with service time distribution a mixture of m negative exponential distributions is analysed. The starting point is the functional relation for the Laplace–Stieltjes transform of the stationary joint distribution of the workloads of the two servers. By means of Wiener–Hopf decompositions the solution is constructed and reduced to the solution of m linear equations of which the coefficients depend on the zeros of a polynome. Once this set of equations has been solved the moments of the waiting time distribution can be easily obtained. The Laplace–Stieltjes transform of the stationary waiting time distribution has been derived, it is an intricate expression.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.