Abstract
We study the problem of the so-called lower order for one kind of mappings with finite distortion, actively investigated in the recent 15–20 years.We prove that mappings with finite length distortion f: D → ℝn, n ≥ 2, whose outer dilatation is integrable to the power α > n − 1 with finite asymptotic limit have lower order bounded from below.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.