Abstract

The Lovász theta function of a graph is a well-known upper bound on the stability number. It can be computed efficiently by solving a semidefinite program (SDP). Actually, one can solve either of two SDPs, one due to Lovász and the other to Grötschel et al. The former SDP is often thought to be preferable computationally, since it has fewer variables and constraints. We derive some new results on these two equivalent SDPs. The surprising result is that, if we weaken the SDPs by aggregating constraints, or strengthen them by adding cutting planes, the equivalence breaks down. In particular, the Grötschel et al. scheme typically yields a stronger bound than the Lovász one.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.