Abstract
A family of creep-resistant, Al2O3-forming austenitic (AFA) stainless steels was recently developed. The alloys exhibit excellent oxidation resistance up to ∼800°C, but are susceptible to internal attack of Al at higher temperatures. In the present work, higher levels of Ni, Cr, Al, and Nb additions were found to correlate with improved oxidation behavior at 900°C in air. The alloys generally appeared to be initially capable of external Al2O3 scale formation, with a subsequent transition to internal attack of Al (internal oxidation and internal nitridation) that is dependent on alloy composition. Compositional profiles at the alloy/scale interface suggest that the transition to internal oxidation is preceded by subsurface depletion of Al in the lower-Al compositions. In higher Al-containing compositions, NiAl second-phase precipitates act as an Al reservoir, and Al depletion may not be a key factor. Alloy design directions to increase the upper-temperature limit of protective Al2O3 scale formation in these alloys are discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.