Abstract

The effect of the presence of a minor antenna component in light-harvesting complexes of photosynthetic bacteria is investigated with numerical simulation employing the transition probability matrix method. A model antenna system of hexagonal symmetry is adopted, using as a working hypothesis that the minor component forms a ring around the trap. Three cases have been considered: (a) the minor component is isoenergetic with the trap, which is at lower energy than the antennas (the "supertrap"), (b) the minor component is at lower energy than the trap, which is at lower energy than the antennas (the "asymmetric gutter"), (c) the minor component is at lower energy than the trap, which is isoenergetic with the antennas (the "gutter"). It is found that the supertrap speeds up the fluorescence decay and enhances the trapping efficiency, whereas the gutter slows down the fluorescence decay and decreases the trapping efficiency. It is concluded that, in contrast to a recent suggestion (Bergström, H., R. van Grondelle, and V. Sundström. 1989. FEBS (Fed. Eur. Biochem. Soc.) Lett. 250:503-508), concentrating excitations in the vicinity of the trap by the so-called long-wavelength minor antenna component purportedly present in Rhodobacter sphaeroides and Rhodospirillum rubrum instead of improving trapping actually impedes trapping.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.