Abstract

Previous tree‐ring–based Northern Hemisphere temperature reconstructions portray a varying amplitude range between the “Medieval Warm Period” (MWP), “Little Ice Age” (LIA) and present. We describe a new reconstruction, developed using largely different methodologies and additional new data compared to previous efforts. Unlike earlier studies, we quantify differences between more traditional (STD) and Regional Curve Standardization (RCS) methodologies, concluding that RCS is superior for retention of low‐frequency trends. Continental North American versus Eurasian RCS series developed prior to merging to the hemispheric scale cohere surprisingly well, suggesting common forcing, although there are notable deviations (e.g., fifteenth to sixteenth century). Results indicate clear MWP (warm), LIA (cool), and recent (warm) episodes. Direct interpretation of the RCS reconstruction suggests that MWP temperatures were nearly 0.7°C cooler than in the late twentieth century, with an amplitude difference of 1.14°C from the coldest (1600–1609) to warmest (1937–1946) decades. However, we advise caution with this analysis. Although we conclude, as found elsewhere, that recent warming has been substantial relative to natural fluctuations of the past millennium, we also note that owing to the spatially heterogeneous nature of the MWP, and its different timing within different regions, present palaeoclimatic methodologies will likely “flatten out” estimates for this period relative to twentieth century warming, which expresses a more homogenous global “fingerprint.” Therefore we stress that presently available paleoclimatic reconstructions are inadequate for making specific inferences, at hemispheric scales, about MWP warmth relative to the present anthropogenic period and that such comparisons can only still be made at the local/regional scale.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.