Abstract

In this paper we provide an analysis of the logical relations within the conceptual or lexical field of angles in 2D geometry. The basic tripartition into acute/right/obtuse angles is extended in two steps: first zero and straight angles are added, and secondly reflex and full angles are added, in both cases extending the logical space of angles. Within the framework of logical geometry, the resulting partitions of these logical spaces yield bitstring semantics of increasing complexity. These bitstring analyses allow a straightforward account of the Aristotelian relations between angular concepts. In addition, also relational concepts such as complementary and supplementary angles receive a natural bitstring analysis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.