Abstract
The main goal of this article is to compute the class of the divisor of ℳ ¯ 3 obtained by taking the closure of the image of Ωℳ 3 (6;-2) by the forgetful map. This is done using Porteous formula and the theory of test curves. For this purpose, we study the locus of meromorphic differentials of the second kind, computing the dimension of the map of these loci to ℳ g and solving some enumerative problems involving such differentials in low genus. A key tool of the proof is the compactification of strata recently introduced by Bainbridge–Chen–Gendron–Grushevsky–Möller.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.