Abstract

Several mechanisms have been suggested to contribute to the heating of the solar corona, each of which deposits energy along coronal loops in a characteristic way. To compare the theoretical models with observations one has to derive observable quantities from the models. One such parameter is the temperature profile along a loop. Here numerical experiments of flux braiding are used to provide the spatial distribution of energy deposition along a loop. It is found that braiding produces a heat distribution along the loop which has slight peaks near the footpoints and summit and whose magnitude depends on the driving time. Using different examples of the heat deposition, the temperature profiles along the loop are determined assuming a steady state. Along with this, different methods for providing average temperature profiles from the time-series have been investigated. These give summit temperatures within approximately 10% of each other. The distribution of the heating has a significant impact on both the summit temperature and the temperature distribution along the loop. In each case the ratio between the heat deposited and radiation provides a scaling for the summit temperature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.