Abstract

Modification of Tyr-345 at a catalytic site in a single beta subunit of the bovine heart mitochondrial F1-ATPase (MF1) by 5'-p-fluorosulfonylbenzoylinosine did not affect subsequent labeling of noncatalytic sites at Tyr-368 and His-427 in three copies of the beta subunit by 5'-p-fluorosulfonylbenzoyladenosine (FSBA). These results clearly show that the beta subunit contains at least parts of the catalytic and noncatalytic nucleotide binding sites. Inactivation of MF1 by 96% with FSBA was accompanied by a decrease in the endogenous ADP content from 1.86 to 0.10 mol per mol of MF1. Decrease in the endogenous ADP content during the inactivation of the enzyme with FSBA paralleled loss in activity in a manner which suggests that the reaction of FSBA with an open noncatalytic site promoted release of ADP from another noncatalytic site until the third site reacted with FSBA. Two pKa values of about 5.9 and 7.6 were observed on the acid side of the pH optimum in the pH-rate profile for ATP hydrolysis catalyzed by MF1 in neutral acid buffers. In contrast, a single pKa of 5.9 was present in the pH-rate profile for ITP hydrolysis catalyzed by the enzyme in the same buffers. The augmented rate observed for ATP hydrolysis at pH 8.0, over that observed at pH 6.5, was lost as the enzyme was inactivated by FSBA in a manner suggesting that modulation is lost as the third noncatalytic site is modified. This suggests that ATP hydrolysis by MF1 is modulated in a pH-dependent manner by ATP binding to an open noncatalytic site. Two other modulations associated with binding of adenine nucleotides to noncatalytic sites, ADP-induced hysteretic inhibition and apparent negative cooperativity reflected by the Hill coefficient for the hydrolysis of 50-3000 microM ATP at pH 8.0, also disappeared as the third noncatalytic site reacted with FSBA.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.