Abstract
The local electronic and atomic structure of (111)-oriented, single crystalline mixed Ce1−xPrxO2−δ (x = 0, 0.1 and 0.6) epitaxial thin films on silicon substrates have been investigated in view of engineering redox properties of complex oxide films. Non-destructive X-ray absorption near edge structure reveals that Pr shows only +3 valence and Ce shows only nominal +4 valence in mixed oxides. Extended x-ray absorption fine structure (EXAFS) studies were performed at K edges of Ce and Pr using a specially designed monochromator system for high energy measurements. They demonstrate that the fluorite lattice of ceria (CeO2) is almost not perturbed for x = 0.1 sample, while higher Pr concentration (x = 0.6) not only generates a higher disorder level (thus more disordered oxygen) but also causes a significant reduction of Ce–O interatomic distances. The valence states of the cations were also examined by techniques operating in highly reducing environments: scanning transmission electron microscopy-electron energy loss spectroscopy and X-ray photoemission spectroscopy; in these reducing environments, evidence for the presence of Ce3+ was clearly found for the higher Pr concentration. Thus, the introduction of Pr3+ into CeO2 strongly enhances the oxygen exchange properties of CeO2. This improved oxygen mobility properties of CeO2 are attributed to the lattice disorder induced by Pr mixing in the CeO2 fluorite lattice, as demonstrated by EXAFS measurements. Thus, a comprehensive picture of the modifications of the atomic and electronic structure of Ce1−xPrxO2−δ epitaxial films and their relation is obtained.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.