Abstract

Abstract The purpose of this study is to conduct a high-resolution nonlinear finite element analysis of the elastic–plastic behaviour of titanium/silicon carbide composites subject to transverse loading. This class of metal matrix composites is designed for the next generation of supersonic jet engines and deserves careful assessment of its behaviour under thermo mechanical loads. Three aspects of the work are accordingly examined. The first is concerned with the development of a representative unit cell capable of accurately describing the local elastic–plastic behaviour of the interface in metal matrix composites under thermal and mechanical loads. The second is concerned with the determination of the influence of mismatch in the mechanical properties between the inhomogeneity and the matrix upon the induced stress fields and the plastic zone development and its growth. The third is concerned with unloading and the role played by the interface upon residual stresses. It is found that the maximum interfacial stress in the matrix appears in the case involving cooling from the relieving temperature with subsequent applied compressive loading. It is also found that the mismatch in mechanical properties between the matrix and the inhomogeneity introduces significant changes in the stress distribution in the matrix. Specifically, it is observed that the maximum radial and tangential stresses in the matrix take place at the interface. The plastic deformation of the matrix leads to a relaxation of these stresses and assists in developing a more uniform interfacial stress distribution. However, the matrix stresses and the resulting equivalent plastic strains still reach their maximum values at that interface. The results show similarities in the patterns of the interfacial stress distribution and plastic zone development for all ranges of fibre volume fractions and loading levels examined. However, they also show marked differences in both the magnitude and patterns of matrix stress distribution between the adjacent inhomogeneities as a result of interaction effects between the fibres.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call