Abstract

A local convergence analysis for a generalized family of two step Secant-like methods with frozen operator for solving nonlinear equations is presented. Unifying earlier methods such as Secant’s, Newton, Chebyshev-like, Steffensen and other new variants the family of iterative schemes is built up, where a profound and clear study of the computational efficiency is also carried out. Numerical examples and an application using multiple precision and a stopping criterion are implemented without using any known root. Finally, a study comparing the order, efficiency and elapsed time of the methods suggested supports the theoretical results claimed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.