Abstract

The classical Birkhoff conjecture claims that the boundary of a strictly convex integrable billiard table is necessarily an ellipse (or a circle as a special case). In this article we prove a complete local version of this conjecture: a small integrable perturbation of an ellipse must be an ellipse. This extends and completes the result in Avila-De Simoi-Kaloshin, where nearly circular domains were considered. One of the crucial ideas in the proof is to extend action-angle coordinates for elliptic billiards into complex domains (with respect to the angle), and to thoroughly analyze the nature of their complex singularities. As an application, we are able to prove some spectral rigidity results for elliptic domains.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.