Abstract
A harmonic synergy between the load-bearing and stabilizing components of the spine is necessary to maintain its normal function. This study aimed to investigate the load-sharing along the ligamentous lumbosacral spine under sagittal loading. A 3D nonlinear detailed Finite Element (FE) model of lumbosacral spine with realistic geometry was developed and validated using wide range of numerical and experimental (in-vivo and in-vitro) data. The model was subjected to 500N compressive Follower Load (FL) combined with 7.5Nm flexion (FLX) or extension (EXT) moments. Load-sharing was expressed as percentage of total internal force/moment developed along the spine that each spinal component carried. These internal forces and moments were determined at the discs centres and included the applied load and the resisting forces in the ligaments and facet joints.The contribution of the facet joints and ligaments in supporting bending moments produced additional forces and moments in the discs. The intervertebral discs carried up to 81% and 68% of the total internal force in case of FL combined with FLX and EXT, respectively. The ligaments withstood up to 67% and 81% of the total internal moment in cases of FL combined with EXT and FLX, respectively. Contribution of the facet joints in resisting internal force and moment was noticeable at levels L4-S1 only particularly in case of FL combined with EXT and reached up 29% and 52% of the internal moment and force, respectively. This study demonstrated that spinal load-sharing depended on applied load and varied along the spine.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.