Abstract

AbstractWe consider axially uniform, two-phase flow through a rigid curved tube in which a fluid (air) core is surrounded by a film of a second, immiscible fluid (water): a simplified model for flow in a conducting airway of the lung. Jensen (1997) showed that, in the absence of a core flow, surface tension drives the system towards a configuration in which the film thickness tends to zero on the inner wall of the bend. In the present work, we demonstrate that the presence of a core flow, driven by a steady axial pressure gradient, allows the existence of steady states in which the film thickness remains finite, a consequence of the fact that the tangential stresses at the interface, imposed by secondary flows in the core, can oppose the surface-tension-driven flow. For sufficiently strong surface tension, the steady configurations are symmetric about the plane containing the tube’s centreline, but as the surface tension decreases the symmetry is lost through a pitchfork bifurcation, which is closely followed by a limit point on the symmetric solution branch. This solution structure is found both in simulations of the Navier–Stokes equations and a thin-film model appropriate for weakly curved tubes. Analysis of the thin-film model reveals that the bifurcation structure arises from a perturbation of the translational degeneracy of the interface location in a straight tube.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.