Abstract

We deduce Liouville type theorems for the Navier-Stokes and the Euler equations on ${\mathbb R}^N$, $N\geq 2$. Specifically, we prove that if a weak solution $(v,p)$ satisfies $|v|^2 +|p| \in L^1 (0,T; L^1({\mathbb R}^N, w_1(x)dx))$ and $\int_{{\mathbb R}^N} p(x,t)w_2 (x)dx \geq0$ for some weight functions $w_1(x)$ and $w_2 (x)$, then the solution is trivial, namely $v=0$ almost everywhere on ${\mathbb R}^N \times (0, T)$. Similar results hold for the MHD equations on ${\mathbb R}^N$, $N\geq3$.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.