Abstract
We use dynamic time warping, a non-parametric pattern recognition method, to study interlinkages between major energy and agricultural commodity prices. Cluster analysis is conducted to group commodity prices based on their behavioral likeness by maximizing the differences between groups while minimizing the differences within groups. Two clusters emerge: one comprises the prices of crude oil and six major agricultural commodities, whereas the other contains coal and natural gas prices. Regarding lead-lag associations, oil prices generally lag crop prices; however, there are periods during which the former lead the latter. Furthermore, the duration with which oil prices lead or lag crop prices changes frequently.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.