Abstract
ABSTRACT In this paper, we proposed two ways to understand the rank deficiency in the continuous system (boundary integral equation method, BIEM) and discrete system (boundary element method, BEM) for a circular case. The infinite-dimensional degree of freedom for the continuous system can be reduced to finite-dimensional space using the generalized Fourier coordinates. The property of the second-order tensor for the influence matrix under different observers is also examined. On the other hand, the discrete system in the BEM can be analytically studied, thanks to the spectral property of circulant matrix. We adopt the circulant matrix of odd dimension, (2N + 1) by (2N + 1), instead of the previous even one of 2N by 2N to connect the continuous system by using the Fourier bases. Finally, the linkage of influence matrix in the continuous system (BIE) and discrete system (BEM) is constructed. The equivalence of the influence matrix derived by using the generalized coordinates and the circulant matrix are proved by using the eigen systems (eigenvalue and eigenvector). The mechanism of degenerate scale for a circular domain can be analytically explained in the discrete system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.