Abstract

The ability of the Langevin equation to predict coagulation kernels in the transition regime (ranging from ballistic to diffusive) is not commonly discussed in the literature, and previous numerical works are lacking a theoretical justification. This work contributes to the conversation to gain better understanding on how the trajectories of suspended particles determine their collision frequency. The fundamental link between the Langevin equation and coagulation kernels based on a simple approximation of the former is discussed. The proposed approximation is compared to a fractal model from the literature. In addition, a new, simple expression for determining the coagulation kernels in the transition regime is proposed. The new expression is in good agreement with existing methods such as the flux-matching approach proposed by Fuchs. The new model predicts an asymptotic limit for the kinetics of coagulation in the transition regime.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.