Abstract

BackgroundConformational changes coupled to ligand binding constitute the structural and energetics basis underlying cooperativity, allostery and, in general, protein regulation. These conformational rearrangements are associated with heat capacity changes. ITC is a unique technique for studying binding interactions because of the simultaneous determination of the binding affinity and enthalpy, and for providing the best estimates of binding heat capacity changes. Scope of reviewStill controversial issues in ligand binding are the discrimination between the “conformational selection model” and the “induced fit model”, and whether or not conformational changes lead to temperature dependent apparent binding heat capacities. The assessment of conformational changes associated with ligand binding by ITC is discussed. In addition, the “conformational selection” and “induced fit” models are reconciled, and discussed within the context of intrinsically (partially) unstructured proteins. Major conclusionsConformational equilibrium is a major contribution to binding heat capacity changes. A simple model may explain both conformational selection and induced fit scenarios. A temperature-independent binding heat capacity does not necessarily indicate absence of conformational changes upon ligand binding. ITC provides information on the energetics of conformational changes associated with ligand binding (and other possible additional coupled equilibria). General significancePreferential ligand binding to certain protein states leads to an equilibrium shift that is reflected in the coupling between ligand binding and additional equilibria. This represents the structural/energetic basis of the widespread dependence of ligand binding parameters on temperature, as well as pH, ionic strength and the concentration of other chemical species. This article is part of a Special Issue entitled Microcalorimetry in the BioSciences — Principles and Applications, edited by Fadi Bou-Abdallah.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.