Abstract
We consider the system of partial differential equations \[ \begin{cases} \eta_t - \alpha u_{xxx} - \beta \eta_{xx} = 0 \\ u_t + \eta_x + \beta u_{xx} = 0 \end{cases} \] on bounded domains, known in the literature as the Whitham–Broer–Kaup system. The well-posedness of the problem, under suitable boundary conditions, is addressed, and it is shown to depend on the sign of the number \[ \varkappa=\alpha-\beta^2. \] In particular, existence and uniqueness occur if and only if $\varkappa >0$ . In which case, an explicit representation for the solutions is given. Nonetheless, for the case $\varkappa \leq 0$ we have uniqueness in the class of strong solutions, and sufficient conditions to guarantee exponential instability are provided.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Royal Society of Edinburgh: Section A Mathematics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.