Abstract

This paper is devoted to the study of the underlying linearities of the coupled Harry–Dym (cHD) soliton hierarchy, including the well-known cHD equation. Resorting to the nonlinearization of Lax pairs, a family of finite-dimensional Hamiltonian systems associated with soliton equations are presented, constituting the decomposition of the cHD soliton hierarchy. After suitably introducing the Abel–Jacobi coordinates on a Riemann surface, the cHD soliton hierarchy can be ultimately reduced to linear superpositions, expressed by the Abel–Jacobi variables.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.