Abstract

In this paper, we study the secondary oil recovery process. The oil from a porous reservoir at low pressure is pushed by a forerunner, less viscous fluid (a polymer solute). Then the well-known Saffman-Taylor instability appears. Some authors tried to minimize this instability by using a succession of intermediate liquids with constant viscosities - the multi-layer model. The surface tensions on the interfaces between liquid layers are a stabilizing factor. In some previous papers, we proved some contradictions of this multi-layer model. However, we considered that the corresponding stability problem has a solution. This model's first step (and the mathematical basis) is the three-layer model, with a single intermediate liquid. We prove that the linear stability problem for the three-layer model has no solution (in general) - the growth rates of perturbations may not exist. On the contrary, an intermediate liquid with a suitable variable viscosity can almost suppress the Saffman-Taylor instability, even if the surface tensions are missing [17].

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.