Abstract

In this paper, we study the complexity of the forward–backward splitting method with Beck–Teboulle’s line search for solving convex optimization problems, where the objective function can be split into the sum of a differentiable function and a nonsmooth function. We show that the method converges weakly to an optimal solution in Hilbert spaces, under mild standing assumptions without the global Lipschitz continuity of the gradient of the differentiable function involved. Our standing assumptions is weaker than the corresponding conditions in the paper of Salzo (SIAM J Optim 27:2153–2181, 2017). The conventional complexity of sublinear convergence for the functional value is also obtained under the local Lipschitz continuity of the gradient of the differentiable function. Our main results are about the linear convergence of this method (in the quotient type), in terms of both the function value sequence and the iterative sequence, under only the quadratic growth condition. Our proof technique is direct from the quadratic growth conditions and some properties of the forward–backward splitting method without using error bounds or Kurdya-Łojasiewicz inequality as in other publications in this direction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.