Abstract
Periodic sequences over finite fields, constructed by classical cyclotomic classes and generalized cyclotomic classes, have good pseudorandom properties. The linear complexity of a period sequence plays a fundamental role in the randomness of sequences. Let p, q, and r be distinct odd primes with gcd(p−1, q−1)=gcd(p−1, r−1)=gcd(q−1, r−1)=2. In this paper, a new class of generalized cyclotomic sequence with respect to pqr over GF(2) is constructed by finding a special characteristic set. In addition, we determine its linear complexity using cyclotomic theory. Our results show that these sequences have high linear complexity, which means they can resist linear attacks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.