Abstract

To demarcate the limits of experimental knowledge, we probe the limits of what might be called an experiment. By appeal to examples of scientific practice from astrophysics and analogue gravity, we demonstrate that the reliability of knowledge regarding certain phenomena gained from an experiment is not circumscribed by the manipulability or accessibility of the target phenomena. Rather, the limits of experimental knowledge are set by the extent to which strategies for what we call 'inductive triangulation' are available: that is, the validation of the mode of inductive reasoning involved in the source-target inference via appeal to one or more distinct and independent modes of inductive reasoning. When such strategies are able to partially mitigate reasonable doubt, we can take a theory regarding the phenomena to be well supported by experiment. When such strategies are able to fully mitigate reasonable doubt, we can take a theory regarding the phenomena to be established by experiment. There are good reasons to expect the next generation of analogue experiments to provide genuine knowledge of unmanipulable and inaccessible phenomena such that the relevant theories can be understood as well supported. This article is part of a discussion meeting issue 'The next generation of analogue gravity experiments'.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.