Abstract

We investigate the limiting behavior of sample central moments, examining the special cases where the limiting (as the sample size tends to infinity) distribution is degenerate. Parent (non-degenerate) distributions with this property are called singular, and we show in this article that the singular distributions contain at most three supporting points. Moreover, using the delta-method, we show that the (second-order) limiting distribution of sample central moments from a singular distribution is either a multiple, or a difference of two multiples of independent Chi-square random variables with one degree of freedom. Finally, we present a new characterization of normality through the asymptotic independence of the sample mean and all sample central moments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.