Abstract

Recent experimental studies indicate that perovskite, the dominant lower mantle mineral, undergoes a phase change to post-perovskite at high pressures. However, it has been unclear whether this transition occurs within the Earth’s mantle, due to uncertainties in both the thermochemical state of the lowermost mantle and the pressure–temperature conditions of the phase boundary. In this study we compare the relative fit to global seismic data of mantle models which do and do not contain post-perovskite, following a statistical approach. Our data comprise more than 10,000 Pdiff and Sdiff travel-times, global in coverage, from which we extract the global distributions of dlnVS and dlnVP near the core–mantle boundary (CMB). These distributions are sensitive to the underlying lateral variations in mineralogy and temperature even after seismic uncertainties are taken into account, and are ideally suited for investigating the likelihood of the presence of post-perovskite. A post-perovskite-bearing CMB region provides a significantly closer fit to the seismic data than a post-perovskite-free CMB region on both a global and regional scale. These results complement previous local seismic reflection studies, which have shown a consistency between seismic observations and the physical properties of post-perovskite inside the deep Earth.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call