Abstract
In this work we introduce the category of multiplicative sections of an LA-groupoid. We prove that this category carries a natural strict Lie 2-algebra structure, which is Morita invariant. As applications, we study the algebraic structure underlying multiplicative vector fields on a Lie groupoid and in particular vector fields on differentiable stacks. We also introduce the notion of geometric vector field on the quotient stack of a Lie groupoid, showing that the space of such vector fields is a Lie algebra. We describe the Lie algebra of geometric vector fields in several cases, including classifying stacks, quotient stacks of regular Lie groupoids and in particular orbifolds, and foliation groupoids.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.