Abstract
Matrix grammars are one of the classical topics of formal languages, more specifically, regulated rewriting. Although this type of control on the work of context-free grammars is one of the earliest, matrix grammars still raise interesting questions (not to speak about old open problems in this area). One such class of problems concerns the leftmost derivation (in grammars without appearance checking). The main point of this paper is the systematic study of all possibilities of defining leftmost derivation in matrix grammars. Twelve types of such a restriction are defined, only four of which being discussed in literature. For seven of them, we find a proof of a characterization of recursively enumerable languages (by matrix grammars with arbitrary context-free rules but without appearance checking). Other three cases characterize the recursively enumerable languages modulo a morphism and an intersection with a regular language. In this way, we solve nearly all problems listed as open on page 67 of the monograph [7], which can be seen as the main contribution of this paper. Moreover, we find a characterization of the recursively enumerable languages for matrix grammars with the leftmost restriction defined on classes of a given partition of the nonterminal alphabet.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Foundations of Computer Science
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.