Abstract
We investigate the Lefschetz standard conjecture for degree 2 cohomology of hyper-Kähler manifolds admitting a covering by Lagrangian subvarieties. In the case of a Lagrangian fibration, we show that the Lefschetz standard conjecture is implied by the SYZ conjecture characterizing classes of divisors associated with Lagrangian fibration. In dimension 4, we consider the more general case of a Lagrangian covered fourfold X, and prove the Lefschetz standard conjecture in degree 2, assuming ρ(X)=1 and X is general in moduli. Finally we discuss various links between Lefschetz cycles and the study of the rational equivalence of points and Bloch-Beilinson type filtrations, giving a general interpretation of a recent intriguing result of Marian and Zhao.
Accepted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.