Abstract

Barycentric rational Floater–Hormann interpolants compare favourably to classical polynomial interpolants in the case of equidistant nodes, because the Lebesgue constant associated with these interpolants grows logarithmically in this setting, in contrast to the exponential growth experienced by polynomials. In the Hermite setting, in which also the first derivatives of the interpolant are prescribed at the nodes, the same exponential growth has been proven for polynomial interpolants, and the main goal of this paper is to show that much better results can be obtained with a recent generalization of Floater–Hormann interpolants. After summarizing the construction of these barycentric rational Hermite interpolants, we study the behaviour of the corresponding Lebesgue constant and prove that it is bounded from above by a constant. Several numerical examples confirm this result.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.