Abstract
For the many-to-one matching model with firms having substitutable and q-separable preferences we propose two very natural binary operations that together with the unanimous partial ordering of the workers endow the set of stable matchings with a lattice structure. We also exhibit examples in which, under this restricted domain of firms' preferences, the classical binary operations may not even be matching
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.