Abstract

A uniformly random graph on n vertices with a fixed degree sequence, obeying a γ subpower law, is studied. It is shown that, for γ>3, in a subcritical phase with high probability the largest component size does not exceed n1/γ+ɛn, ɛn=O(ln ln n/ln n), 1/γ being the best power for this random graph. This is similar to the best possible n1/(γ−1) bound for a different model of the random graph, one with independent vertex degrees, conjectured by Durrett, and proved recently by Janson.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.