Abstract

The spectrum of weighted graphs is often used to solve the problems in the design of networks and electronic circuits. We first give some perturbational results on the (signless) Laplacian spectral radius of weighted graphs when some weights of edges are modified; we then determine the weighted tree with the largest Laplacian spectral radius in the set of all weighted trees with a fixed number of pendant vertices and a positive weight set. Furthermore, we also derive the weighted trees with the largest Laplacian spectral radius in the set of all weighted trees with a fixed positive weight set and independence number, matching number or total independence number.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.