Abstract

In this study, the effects of hydrogen and CO addition on the laminar flame speed and flame instabilities of CH4/air mixture are investigated experimentally and numerically. Results show that laminar flame speeds increase almost linearly with the addition of hydrogen, which is mainly caused by the increase of the flame temperature and the thermal diffusivity of the mixture. However, it de-creases with the increase of the pressure, which is mainly due to the increase of the mixture density and the enhancement of the termination reactions. The hydrodynamic instability is increased with the increase of hydrogen ratio and pressure, which is due to the reduction of the flame thickness. With the increase of hydrogen fractions and pressure, the Markstein lengths decrease obviously, which means the flame instability is enhanced. The addition of CO has little effect on the flame speeds and flame instabilities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.