Abstract
The Laguerre method for numerically inverting Laplace transforms is an old established method based on the 1935 Tricomi–Widder theorem, which shows (under suitable regularity conditions) that the desired function can be represented as a weighted sum of Laguerre functions, where the weights are coefficients of a generating function constructed from the Laplace transform using a bilinear transformation. We present a new variant of the Laguerre method based on: (i) using our previously developed variant of the Fourier-series method to calculate the coefficients of the Laguerre generating function, (ii) developing systematic methods for scaling, and (iii) using Wynn's ϵ-algorithm to accelerate convergence of the Laguerre series when the Laguerre coefficients do not converge to zero geometrically fast. These contributions significantly expand the class of transforms that can be effectively inverted by the Laguerre method. We provide insight into the slow convergence of the Laguerre coefficients as well as propose a remedy. Before acceleration, the rate of convergence can often be determined from the Laplace transform by applying Darboux's theorem. Even when the Laguerre coefficients converge to zero geometrically fast, it can be difficult to calculate the desired functions for large arguments because of roundoff errors. We solve this problem by calculating very small Laguerre coefficients with low relative error through appropriate scaling. We also develop another acceleration technique for the case in which the Laguerre coefficients converge to zero geometrically fast. We illustrate the effectiveness of our algorithm through numerical examples.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.