Abstract
Let \(G=(V, E)\) be a graph. Denote \(d_G(u, v)\) the distance between two vertices u and v in G. An L(2, 1)-labeling of G is a function \(f: V \rightarrow \{0,1,\ldots \}\) such that for any two vertices u and v, \(|f(u)-f(v)| \ge 2\) if \(d_G(u, v) = 1\) and \(|f(u)-f(v)| \ge 1\) if \(d_G(u, v) = 2\). The span of f is the difference between the largest and the smallest number in f(V). The \(\lambda \)-number \(\lambda (G)\) of G is the minimum span over all L(2, 1)-labelings of G. In this paper, we conclude that the \(\lambda \)-number of each brick product graph is 5 or 6, which confirms Conjecture 6.1 stated in Li et al. (J Comb Optim 25:716–736, 2013).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.