Abstract
An argument is given showing that Coulomb attraction between conduction electrons and impurity ions in a dilute magnetic alloy (DMA) can be disregarded, provided the system's inverse temperature β is replaced by an effective inverse temperature t < β. This replacement allows one to remove the singularity in Kondo's expression for DMA impurity resistivity and to extend his theory to 0 K. The extended Kondo formula agrees with experimental data on resistivity of CuFe in the range of low temperatures and in the neighbourhood of the resistivity minimum. Using an asymptotic solution of the thermodynamics of a dilute s-d system at inverse temperature t, the impurity thermodynamic functions are derived and shown to provide good agreement with experimental data on CuFe , CuCr and ( LaCe ) Al 2 alloys in the low-temperature range. The magnitude of these functions agrees with experiment and does not require rescaling as in previous s-d theories. Nonlinear dependence of CuFe heat capacity on impurity concentration has been accounted for the first time.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.