Abstract

This paper explicitly provides two exhaustive and infinite families of pairs ( M , k ) , where M is a lens space and k is a non-hyperbolic knot in M, which produces a manifold homeomorphic to M, by a non-trivial Dehn surgery. Then, we observe the uniqueness of such knot in such lens space, the uniqueness of the slope, and that there is no preserving homeomorphism between the initial and the final M's. We obtain further that Seifert fibered knots, except for the axes, and satellite knots are determined by their complements in lens spaces. An easy application shows that non-hyperbolic knots are determined by their complement in atoroidal and irreducible Seifert fibered 3-manifolds.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.